A Simple Text-based Relevant Location Prediction Method using Knowledge Base

Mei Sasaki, Shumpei Okura, Shingo Ono
Yahoo Japan Corporation


In this paper, we propose a simple method to predict salient locations from news article text using a knowledge base (KB). The proposed method uses a dictionary of locations created from the KB to identify occurrences of locations in the text and uses the hierarchical information between entities in the KB for assigning appropriate saliency scores to regions. It allows prediction at arbitrary region units and has only a few hyperparameters that need to be tuned. We show using manually annotated news articles that the proposed method improves the f-measure by > 0.12 compared to multiple baselines.