A Systematic Characterization of Sampling Algorithms for Open-ended Language Generation

Moin Nadeem1, Tianxing He2, Kyunghyun Cho3, James Glass4
1MIT CSAIL, 2MIT, 3New York University, 4Massachusetts Institute of Technology


Abstract

This work studies the widely adopted ancestral sampling algorithms for auto-regressive language models. We use the quality-diversity (Q-D) trade-off to investigate three popular sampling methods (top-k, nucleus and tempered sampling). We focus on the task of open-ended language generation, and first show that the existing sampling algorithms have similar performance.

By carefully inspecting the transformations defined by different sampling algorithms, we identify three key properties that are shared among them: entropy reduction, order preservation, and slope preservation. To validate the importance of the identified properties, we design two sets of new sampling methods: one set in which each algorithm satisfies all three properties, and one set in which each algorithm violates at least one of the properties. We compare their performance with existing algorithms, and find that violating the identified properties could lead to drastic performance degradation, as measured by the Q-D trade-off. On the other hand, we find that the set of sampling algorithms that satisfy these properties performs on par with the existing sampling algorithms.